

Contextualise! Personalise! Persuade! A Mobile HCI Framework for Behaviour Change Support Systems

Sebastian Prost

CURE – Center for Usability
Research and Engineering
Businesspark Marximum
Modecenterstraße 17 / Objekt 2
1110 Vienna, Austria
prost@cure.at

Johann Schrammel

CURE – Center for Usability
Research and Engineering
Businesspark Marximum
Modecenterstraße 17 / Objekt 2
1110 Vienna, Austria
schrammel@cure.at

Kathrin Röderer

CURE – Center for Usability
Research and Engineering
Businesspark Marximum
Modecenterstraße 17 / Objekt 2
1110 Vienna, Austria
roederer@cure.at

Manfred Tscheligi

ICT&S Center, University of
Salzburg
Sigmund-Haffner-Gasse 18
5020 Salzburg, Austria
manfred.tscheligi@sbg.ac.at

Abstract

This paper presents a context-aware, personalised, persuasive (CPP) system design framework applicable to the sustainable transport field and other behaviour change support system domains. It operates on a situational, a user, and a target behaviour layer. Emphasis is placed on interlinking each layer's behaviour change factors for greater effectiveness. A prototype CPP system for more sustainable travel behaviour is introduced to demonstrate how the framework can be applied in practice.

Author Keywords

Context-awareness; personalisation; persuasion

ACM Classification Keywords

H.1.2. Models and Principles: User/Machine Systems – Human Factors

General Terms

Design, Human Factors, Theory

Introduction

Motivating people to use more ecologically friendly modes of transport is one step towards a sustainable future. In HCI, a comprehensive framework for

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

MobileHCI '13, Aug 27-30 2013, Munich, Germany

ACM 978-1-4503-2273-7/13/08.

<http://dx.doi.org/10.1145/2493190.2494434>

contextualised, personalised, persuasive (CPP) systems to increase motivational effects is currently not available. This paper introduces our approach of such a framework. It consists of three layers: On a *situation* layer, context-aware mobile computing has recently taken large leaps forward thanks to sensor-rich smart phones that allow systems to adapt to various situational variables [14]. On a *user* layer, personalisation has been identified as a key factor for travel mode choice [1, 11] and behaviour change [3]. On a *target behaviour* layer, different persuasive strategies and system designs [7, 10] have been suggested to support more sustainable behaviours. The objective of this paper is to demonstrate that interlinking these three layers allows designers of Behaviour Change Support Systems (BCSS) [15] to support a targeted behaviour change more effectively. As an example of how this framework can be applied in practice, we present PEACOX¹, a mobile prototype currently under development that aims at motivating travellers to switch from cars to public transport, cycling or walking.

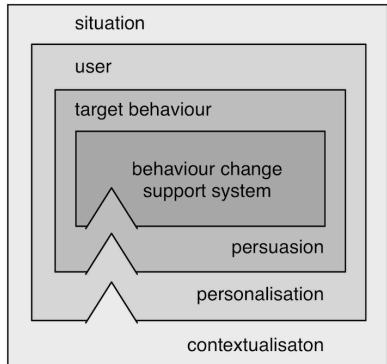
Related Work

The work presented in this paper builds upon research in the fields of context-aware mobile computing, transport research, and persuasive technology.

Context-Aware Mobile Computing

For the purpose of this paper, we will follow Dey's [6] definition of context as "any information that can be used to characterize the situation of an entity". Zimmerman et al. [21] extend this definition: Multiple entities can share contexts through relations. In our

¹ <http://www.project-peacox.eu>.


instance the entity "user" "carries" (relation) the entity "device". Ever since the introduction of context-aware computing by Shilit [17], the challenge here is to allow the device to exploit this relation and build an internal model of the user's context. A common, but still challenging, approach is to try to derive so-called high-level context factors such as the user's activities from sensing low-level context data such as time, location, system status, touch, light, sound, and movement [4].

Transport Research

Looking at transport research, two high-level factors are important to identify: current mode of transport (e.g. car, public transport, bicycle, walking) and trip purpose (e.g. going to work or back home, daily errands, leisure, and business trips). Furthermore, in transport research, studies have identified several purposive-rational, socio-emotional and socio-demographic variables contributing to an individual's travel behaviour [1, 2, 11, 13]. Influencing variables include travel time, travel costs, comfort, availability, accessibility, trip purpose, autonomy, status, experience, privacy, stress-free travelling, safety, ecological awareness, ecological values, social and moral norms, habits, and a number of demographic variables. These factors serve as an important basis for our CPP system design framework.

Persuasive Technology

For over a decade now, persuasive technology [9, 18] has been applied in sustainable HCI to motivate persons to change their attitude and behaviour [7, 10]. Context-awareness has always been recognised as key for mobile persuasive technology [8, 9]. The Persuasive System Design (PSD) model [15] recognises, among others, "use" (meaning usage domain) and "user"

Figure 1: The CPP system design framework. Target behaviour is motivated by persuasive strategies, which are adjusted to the user (personalisation), and in turn to the situation the user is in (contextualisation)

(meaning user group) contexts. Applications using the PSD model [18, 20], understand these contexts as primarily static. However, context-aware technology needs to sense and respond to personal and situational factors to adapt a system to factors identified in transport research. Recently, research in persuasive technology has turned towards personalisation [12, 16]. The concept of persuadability [12] describes an individual's susceptibility to a specific persuasive strategy and methods to measure persuadability have been developed [4, 5]. Thus, looking again at transport research, a BCSS should focus on an individual's persuadability for greater efficiency and impact.

A System Design Framework for Context-aware, Personalised, and Persuasive BCSS

Our proposed CPP framework supports system designers to apply and interlink context, personal, and persuasive factors to achieve the targeted behaviour change towards more ecologically friendly travelling.

The CPP framework: A Layered Approach

The suggested framework operates on and between three layers (see Figure 1 for a graphical representation). First, on the target behaviour layer, a BCSS implements a number of persuasive strategies. Next, on the user layer, it personalises its services. Finally, on the situation layer, it adjusts to a specific context. The selection of strategies, personal, and context variables needs to be based on the system's application domain.

Interlinked Layers

As represented in Figure 1, the individual layers are not isolated but interlinked. Designers of BCCS should

therefore consider the following connections between layers:

- Personalisation should adjust to specific contexts.
- Persuasion should adapt to specific users and situations.
- The BCSS should respond to specific target behaviours, users, and situations.

Behaviour Change Support Factors

For each layer, several behaviour change support factors (BCSFs) may be identified, depending on the specific BCSS application. It is those factors that interlink the different layers. They describe which factors on one layer influence which factors on another layer. For example, a certain situational factor (such as location or weather) can alter the system's personalisation and persuasion mechanisms.

Putting the CPP Framework into Practice

In this section we present PEACOX, a system that represents our attempt to put the framework into practice. The system is a trip-planning application for smartphones that motivates users to switch to more sustainable modes of transport. It applies the CPP framework through multiple BCSFs. As an example of how layers can be interlinked, we can look at route recommendations. The presentation of route options and CO₂ data can be varied by inclusion of different persuasive strategies. These in turn can be adapted to the user's personality, e.g. the attitude towards different modes of transport and a user's persuadability. Finally, routing data can be altered by context, e.g. the weather or the trip purpose. Table 1 lists all the factors to be implemented in PEACOX.

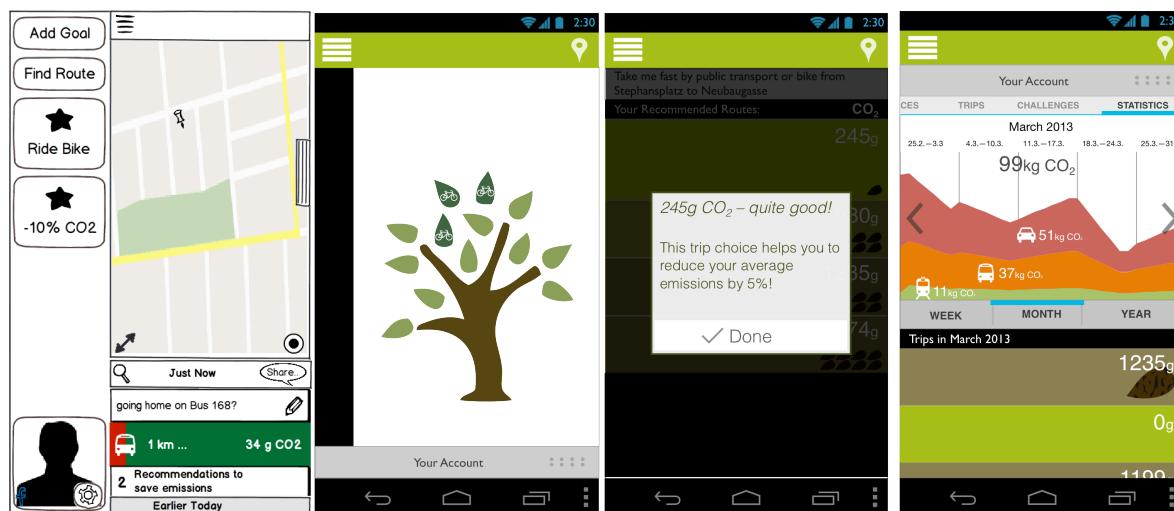

BCSF	PEACOX Prototype Example
Contextualisation: Adjust to ...	
Time	... time of day, week, season; real-time updates on arrival times of public transport
Location	... proximity to public transport stops, distance to destination; proactive suggestions of nearby eco-friendly alternatives
Physical Environment	... weather and traffic conditions
Social Environment	... travelling alone or in a group (as a trip-specific setting)
Current Activity	... trip mode (car, tram, bus, metro, train, cycling, walking) (automatic detection)
Current Goals	... trip purpose (work, home, business, leisure, daily errands) (automatic detection)
Personalisation	
Persuadability	Adjust persuasive strategies to user's persuadability (profile questions, machine-learning)
Mobility Type	Adjust to mobility type of user (e.g. die-hard driver vs. car-less crusaders [1]) (profile questions, machine learning)
Rational Variables	Give trip-relevant information, such as time, costs, comfort, availability, accessibility, reliability
Social-Emotional Variables	Focus on appealing to environmental values (highlighting CO ₂ emissions), experience factor (playful and competitive or collaborative challenges), and social norms (behaviour comparison with others)
History	Learn travel patterns (route recommendations, CO ₂ feedback, persuasive strategies)
Demographics	Adjust to disabilities, life situation (e.g. travelling alone or with kids), possession of car, bicycle, or driver's licence (e.g. for car sharing options) (user profile setting)
Persuasive Strategies	
Mobile Loyalty	The application primarily serves the user by providing directions instead of trying to change behaviour
Feedback & Self-Monitoring	Information on past trips (including modes of transport and personal CO ₂ emissions); daily CO ₂ feedback
Expertise, Tunnelling & Suggestion	Eco-friendly and personalised trip recommendations
Kairos & Information Quality	Eco-friendly & trip-relevant information while travelling, travel mode specific POIs; accurate CO ₂ emission feedback, automatic trip mode & trip purpose detection
Surveillance & Social Facilitation	Visualisation of tracking status, possibility to share trips on social networking websites
Commitment, Competition & Rewards	Voluntary, public commitments to CO ₂ -saving challenges (e.g. "I ride my bike to work three times a week"), virtual rewards for completed challenges
Social Comparison & Social Learning	Sharing of CO ₂ performance on social-networking sites, comparison with others

Table 1: The CPP system design framework put into practice in the PEACOX prototype smartphone application providing eco-friendly, context-aware, personalised, persuasive trip recommendations and CO₂ emission feedback. The right column lists how the app implements different BCSFs (on the left side) and how they are interlinked.

Figure 2 shows a selection of user interface design concepts for implementing the BCSFs listed in Table 1. Figure 2a shows an early design sketch. Challenges have been integrated into a slide-in side bar. Travel mode and trip purpose detection, as well as live CO₂ feedback have been integrated below the map. Figure 2b shows a design mock-up for a tree-based CO₂ feedback and reward system. The tree grows new

Conclusions & Future Research

We presented a system design framework for context-aware, personalised, and persuasive BCSS. It aims at supporting designers in effectively changing user behaviour. Furthermore, the paper demonstrated how the framework can be put into practice with a mobile smart phone application for behaviour change towards more sustainable transport modes. A first running

Figure 2. User interface design concepts of the PEACOX app: CO₂-reducing challenges (a), daily CO₂ feedback and rewards (b), personalised pre-trip CO₂ feedback (c), and trip-mode specific CO₂ emission statistics (d).

leaves when the user takes sustainable transport, but loses leaves when CO₂ is emitted. Figure 2c shows an example of a personalised pre-trip CO₂ feedback. The type of message is adjusted to the persuadability of the user (for example a message designed to contain a self-monitoring or social comparison strategy). Figure 2d shows a design for travel-mode specific CO₂ emission statistics.

prototype of the system will be evaluated in the field in summer 2013. We expect to get valuable insights on how effectively the system can motivate users to increase use of public transport, cycling or walking and to further improve the system. For future work, we believe that the framework has a high application potential and can be transferred from the context of sustainable transport to other areas of BCSS.

Acknowledgements

This work has been partly funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°288466 PEACOX. We thank Fluidtime Data Services GmbH for their contribution to the screen design concepts.

References

- [1] Anable, J. 'Complacent Car Addicts' or 'Aspiring Environmentalists'? Identifying travel behaviour segments using attitude theory. *Transport Policy* 12, 1 (2005), 65–78.
- [2] Bamberg, S., Hunecke, M., and Blöbaum, A. Social context, personal norms and the use of public transportation: Two field studies. *Journal of Environmental Psychology* 27, 3 (2007), 190–203.
- [3] Berkovsky, S., Freyne, J., and Oinas-kukkonen, H. Influencing Individually. *ACM Transactions on Interactive Intelligent Systems* 2, 2 (2012), 1–8.
- [4] Bettini, C. et al., 2010. A survey of context modelling and reasoning techniques. *Pervasive and Mobile Computing*, 6(2), pp.161–180.
- [5] Busch, M., Schrammel, J., and Tscheligi, M. Personalized Persuasive Technology—Development and Validation of Scales for Measuring Persuadability. *Proc. Persuasive*, ACM (2013), 33–38.
- [6] Dey, A.K. Understanding and Using Context. *Personal And Ubiquitous Computing* 5, (2001), 4–7.
- [7] DiSalvo, C., Sengers, P., and Brynjarsdóttir, H. Mapping the Landscape of Sustainable HCI. *Proc. CHI*, ACM (2010).
- [8] Fogg, B.J., Eckles, D., Bogost, I., et al. *Mobile Persuasion: 20 Perspectives of the Future of Behavior Change*. Stanford Captology Media, 2007.
- [9] Fogg, B.J. *Persuasive Technology: Using Computers to Change What We Think and Do (Interactive Technologies)*. Morgan Kaufmann, 2002.
- [10] Froehlich, J., Findlater, L., Landay, J., and Science, C. The Design of Eco-Feedback Technology. *Proc. CHI*, ACM (2010), 1999–2008.
- [11] Hunecke, M., Haustein, S., Bohler, S., and Grischkat, S. Attitude-Based Target Groups to Reduce the Ecological Impact of Daily Mobility Behavior. *Environment and Behavior* 42, 1 (2008), 3–43.
- [12] Kaptein, M., Lacroix, J., and Saini, P. Individual differences in persuadability in the health promotion domain. *Proc. Persuasive*, ACM (2010).
- [13] Kaufmann, V. Modal practices: from the rationales behind car and public transport use to coherent transport policies: case studies in France and Switzerland. *World Transport Policy & Practice* 6, 4 (2000).
- [14] Lane, N., Miluzzo, E. & Lu, H., 2010. A Survey of Mobile Phone Sensing. *IEEE Communications Magazine*, (September), pp.140–150.
- [15] Oinas-Kukkonen, H. and Harjumaa, M. Persuasive Systems Design: Key Issues, Process Model, and System Features. *Communications of the Association for Information Systems* 24, (2009).
- [16] Petkov, P., Goswami, S., Köbler, F., and Krcmar, H. Personalised eco-feedback as a design technique for motivating energy saving behaviour at home. *Proc. NordiCHI*, ACM (2012), 587.
- [17] Schilit, B., Adams, N., and Want, R. Context-aware computing applications. *First Workshop on Mobile Computing Systems and Applications*, (1994), 85–90.
- [18] Torning, K. and Oinas-Kukkonen, H. Persuasive System Design: State of the Art and Future Directions. *Proc. Persuasive*, ACM (2009).
- [19] Wiafe, I. and Nakata, K. Bibliographic Analysis of Persuasive Systems: Techniques, Methods and Domains of Application. *Proc. Persuasive*, ACM (2012), 61–64.
- [20] Zimmermann, A., Lorenz, A., and Oppermann, R. An operational definition of context. *Proc. Context*, Springer (2007), 558–571.